Copula model selection using image recognition
نویسندگان
چکیده
منابع مشابه
Speedy Model Selection (SMS) for Copula Models
We tackle the challenge of efficiently learning the structure of expressive multivariate realvalued densities of copula graphical models. We start by theoretically substantiating the conjecture that for many copula families the magnitude of Spearman’s rank correlation coefficient is monotonic in the expected contribution of an edge in network, namely the negative copula entropy. We then build o...
متن کاملVehicle Logo Recognition Using Image Matching and Textural Features
In recent years, automatic recognition of vehicle logos has become one of the important issues in modern cities. This is due to the unlimited increase of cars and transportation systems that make it impossible to be fully managed and monitored by human. In this research, an automatic real-time logo recognition system for moving cars is introduced based on histogram manipulation. In the proposed...
متن کاملBayesian copula selection
In recent years, the use of copulas has grown extremely fast and with it, the need for a simple and reliable method to choose the right copula family. Existing methods pose numerous difficulties and none is entirely satisfactory.We propose a Bayesian method to select the most probable copula family among a given set. The copula parameters are treated as nuisance variables, and hence do not have...
متن کاملEstimation and Model Selection of Semiparametric Copula-Based Multivariate Dynamic Models Under Copula Misspecification∗
Recently Chen and Fan (2003a) introduced a new class of semiparametric copula-based multivariate dynamic (SCOMDY) models. A SCOMDY model specifies the conditional mean and the conditional variance of a multivariate time series parametrically (such as VAR, GARCH), but specifies the multivariate distribution of the standardized innovation semiparametrically as a parametric copula evaluated at non...
متن کاملBayesian model selection for D-vine pair-copula constructions
In recent years analyses of dependence structures using copulas have become more popular than the standard correlation analysis. Starting from Aas, Czado, Frigessi, and Bakken (2009) regular vine pair-copula constructions (PCCs) are considered the most flexible class of multivariate copulas. PCCs are involved objects but (conditional) independence present in data can simplify and reduce them si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2021
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.3951401